If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+3k-9=0
a = 1; b = 3; c = -9;
Δ = b2-4ac
Δ = 32-4·1·(-9)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{5}}{2*1}=\frac{-3-3\sqrt{5}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{5}}{2*1}=\frac{-3+3\sqrt{5}}{2} $
| 1.3w=2.7 | | 5(7x-6)=215 | | -5+2v=5 | | u=8-3u | | 1/4(28x-16)=7x-3 | | 4(-2x+7)=-4 | | 5-7+9m=11 | | 4(-2x+7=-4 | | 3+10=x-16 | | 32,663=p=11.363 | | 6/7n-2=-4 | | 6(-2x-10)=-144 | | 4=10-2k | | 6x+23=30 | | O.166(x+6)=11 | | 10^y*5^(2y-2)*4^(y-1)=1 | | 13^6-3x=10 | | 14x+24=12x | | 6/f=2.5=f | | 1=5w-4 | | 3x+1/2x+5=2 | | 41=30+5(x-4.8) | | 12r+8+12=0 | | 3x+17=8X-32 | | -5(-3x-3)+5x+4=-1 | | 7+9d=70+3 | | -15=6y-15 | | Y=314/2,07x | | 6a=6a-21 | | 5x+10=300 | | 6+y/5=-24 | | 2x+4)=14 |